
Extensible Grammars
for Language Specialization

Luca Cardelli Florian Ma,tthes * Martin Abadi

Digit,al Equipment, Corporat8ion

Systems Research Center

130 Lytt,on Avenue

Palo Alto. CA 94301, USA

Abstract

A frequent dilemma in the design of a database programming language
is the choice between a language with a rich set of tailored notations
for schema definitions, query expressions, etc., and a small, simple core
language. We address this dilemma by proposing extensible grammars,

a syntax-definition formalism for incremental language extensions and
restrictions based on an initial core language.

The translation of programs written in rich object languages into a

small core language is defined via syntax-directed patterns. In contrast to
macro-expansion and program-rewriting tools, our extensible grammars
respect scoping rules. Therefore, we can introduce binding constructs
while avoiding problems with unwanted name clashes.

We develop extensible grammars and illustrate their use by extend-

ing the lambda calculus with let-bindings, conditionals, and SQL-style
query expressions. We then give a formal description of the underlying

parsing, transformat,ion, and substitution rules. Finally, we sketch how
these rules are exploit,ed in the implementation of a generic, extensible
parser package.

1 Introduction

A frequent dilemma in the design of a database programming language is the

choice between a user-friendly language with a rich set of tailored notations for

schema definitions, query expressions, etc., and a small, conceptually simple

core language. We address this dilemma by proposing extensible grammars, a
synt,ax-definition formalism for incremental, problemspecific language exten-

s~ons and restrictions based on an initial core language.

The translation of programs writtell in rich, user-friendly object languages

into a small core language is defined via syntax-directed patterns. In contrast to

traditional macro-expansion and program-rewriting tools, our extensible gram-

mars respect scoping rules. Therefore, we can introduce new binding constructs

like quantifiers. iterators, and type declarat8ions. while avoiding problems with

unwanted name clashes (“variable captures”).

*The second author was supported by the European Commission, ESPRIT, EC/US-FIDE
Collaborative Activity, 0069829.

12

Syntax extensions provide syntactic sugar for common problem-specific
abstractions. For example, embedded query notations like the relational cal-
culus, the relational algebra, iteration statements, or set comprehensions can
be introduced as abstractions defined from more primitive iteration constructs
[OBBT89, BTBN91, Tri91, MS91]. T ransactions can be introduced as styl-
ized patterns for side-effect control and exception handling. Similarly, struc-
tured form definitions in user interface code can be represented as abstrac-
tions over low-level routines for data formatting, input, and validation. At
the type level, data modeling constructs like classes, objects, and binary rela-
tionships can be viewed as syntactic suga,r for more complex type expressions
involving recursive types, record types, funct,ion types, or abstract data types
[SSS+92, SSS88, PT93].

Syntax restrictions introduce intentional limitations on the expressive-
ness or orthogonality of a core language. The rationale behind restrictions is
to facilitate meta-level reasoning and optimizations tailored to a particular ap-
plication domain. While ad-hoc syntax restrictions are generally considered
harmful in programming language design (from a pragmatic and a semantic
perspective), they are common pract,ice in database models and database lan-
guages. For example, many schema definition languages disallow nested decla-
rations (nested sets, nested classes) or limit recursive declarations to top-level
class or type definitions. Furthermore, user-defined types frequently do not
have first-class status, e.g., they may not appear as argumems to collection-
type constructors. Similarly, query languages typically impose restrictions to
rule out side-effecting operations or calls to user-defined functions in select#ion
and join predicates [SQL87]. S ome query languages require static bindings
to function identifiers (disallowing higher-order functions or dynamic method
dispatch) [SFL83], and some disallow lambda abstractions within quantified
expressions [BTBNSl]. Finally, recursive queries or views are often subject to
stratification constraints [Naq89].

The form of extensible grammars discussed in this paper was invented during
the implementation of a polymorphically t,yped lambda calculus [Car93]. Here,
we develop extensible grammars in a more general context and describe them
in more detail. Section 2 gives a concept,ual overview of the issues that must, be
addressed by a syntax-extension formalism. In section 3 we introduce extensible
grammars by examples. An initial grammar for the lambda calculus is extended
incrementally with new syntactic forms like let-bindings, conditionals, as well as
algebraic and calculus-style query notations. In section 5 the static type rules
for grammar definitions and the semantics of parsers generated from extensible
grammars are defined. We also present a soundness result for the type system
with respect to the evaluation semantics. The impact of these foundations on
the implementation of an extensible parser module for the Tycoon database
environment [Mat931 is highlighted in section 5. Finally, section 6 compares
our concept of extensible grammars with other approaches to syntax extension.

2 Overview

The syntax extension formalism described in this paper assumes the scenario
depicted in figure 1. Given the abstract syntax and the scoping structure of
a target language TL, a new object language OLO can be defined by giving

13

_--__--__--___-___________
Extensible Grammar

Package

Grammar Checker

Parser Generator

4

Parse Tables

Extensible
Parser

TL Type Checker
&Code Generator

Figure 1: The syntax-extension scenario

its cont,ext,-free grammar and the rewrite rules that map O&J terms into TL
terms. The mapping also defines the scoping structure of O&. Our formalism
is incremental since it allows also the definition of an object language OLn by
a translation (rewriting) into another object language OL,-1.

For example, assuming TL to be a functional language, the object language
OLCJ could have either a Lisp-like list notation or an Algol-like keyword-based
notation:

(defn succ(x> (plus x I>>
function succ (x) ; begin return plus(x, I> ; end succ;

Both syntactic forms translate into the same abstract syntax tree in the target
language TL that is passed to the TL type checker and code generator:

Abs(x App(App(plus x> 1))

Section 3.1 gives a complete example of the target-language and the object-
language definition for an untyped lambda calculus.

A simple example of an incremental syntax definition is the definition of a
language with infix function application (0~51) as an extension of a language
with only prefix application (0~50). The notation A 3 B is used to indicate
that the input A in an extended language is equivalent to the input B in a
non-extended language:

function succ (x) ; function succ (x) ;

begin return x + 1 end succ; j begin return plus(x, 1) end succ;

In a database programming setting, OL, could be a language with SQL-
like query notations that is translated into a lambda calculus, O&-l, with
primitive operations on a collection type (nil, cons, iter) [TriSl]:

14

select x.a itero() (nil) (fun(x)

from x in X =k if p(x) then cons(x. a) (2) else 2)
where p(x)

Incremental grammar definit8ions are discussed in more detail in section 3.2
and 3.3. The definit,ion of an SQL-like grammar in our formalism is given in
section 3.4.

Extensible grammars require extensible parsers. That, is, a parser cannot,
be generated once for a given t#arget language, but has to be extended dynami-
cally t,o handle programmer-defined object, languages. New grammar definitions
should be checked to avoid problems t,ypical of macro definitions [MR77]: such
as grammar ambiguity, non-termination of macro expansion, and generation of
illegal syntax t,rees. Our checking is performed already at grammar-definition
Gme and includes standard grammar analysis [ASU87] to avoid the first t,wo
problems. To a.ddress the third problem, we develop a sorting discipline on
productions (see section 4.1).

A more subtle source of difficulties associated with incremental grammar
definition is the binding structure of the t,arget language. The rewriting of
object-language expressions into target-language expressions must be sensitive
to the scoping rules of the target language and may require renaming operations
to avoid name clashes (“variable captures”). A small example using C and the
C preprocessor illustrates the issue in a familiar setting:

#define swap(x,y) {int z; z = x; y = x; x = z;}

ljni a, b; swap(a,b);} /* ok */
111 z, y; swap(z,y);} /* name clash */

The expansion of swap(z, y) leads to the program fragment {int z; z = z;

y = z; z = z}, where the local declaration of z hides the variable z tha.t is
passed as an argument to the macro. Removing the curly brackets in t,he
macro definition does not solve the problem but yields a name clash between
two declarations of the variable z in the same scope.

A solution of the scoping issues associated with rewriting inside binding
st,ructures requires a formalization of the scoping rules of a specific target lan-
guage. To adapt our grammar formalism easily to several target languages,
we divide the scoping problem into a generic bookkeeping task for the exten-
sible parser and a parameterized language-specific renaming operation. This
conceptual division of labor is exploited in the implementation of the exten-
sible grammar package to factor out, t,arget-language dependencies. Scoping
problems are avoided by distinguishing between binding and applied identifier
occurrences, and by renaming when name clashes between identifiers in input
programs and in rewrite rules could occur. Note that this solution is not an
option for a simple token-based preprocessor. Section 4.2 describes the parsing
and renaming rules of our formahsm (for initial as well as incremental gram-
mar definitions). We are also able to prove that these dynamic parse rules are
consistent with the static type rules given in section 4.1.

3 Grammar Definitions

In this section we introduce our extensible grammar formalism by examples.
\$‘c st,art with a small initial grammar for an untyped lambda calculus that is

A

15

ext,ended incrementally to support, database programming language constructs.

grammar
simpleTerm:Term ==

x=ide
I “C” a=t erm “> ”
1 “fun” “(” x=ide 1’) ‘1 a=term

I”{” f=fields “}”
I a=pIde : Term

fields:Fields ==
x=ide 1’~” a=term f =f ields

I
If=pIde:Fields

term:Term ==
a=simpleTerm b=termIter(a)

termIter(a:Term):Term ==
“(1’ b=term “)”

I ” . ” x=ide
I

end

=> mkTermVar (x>
=> a
=> mkTermFun(x a>
=> mkTermRcd(f)
=> a

=> mkFieldCons(x a f >
=> mkFieldNil()
=> f

=> b

=> termIter(mkTermApp(a b))
=> termIter(mkTermDot(a x>>
=> a

Figure 2: Definition of a concrete syntax for the lambda calculus

3.1 Initial Grammar Definitions

This section explains how to define the abstract syntax and the scoping rules
of a particular target language TL as well as the syntax for an initial object
language OLo (see the oval boxes in figure 1). This information is validat,ed
by the grammar checker and then used to generate an initial parser for OLO
programs.

We use an untyped lambda calculus with records as the target language for
our examples. Given a set of identifiers 2, the sets of terms (u, b) and fields (f)
are recursively defined as follows:

a, b ::= x 1 Xz.a 1 a(b) 1 {f} 1 a.2
f ::= 0 1 z=u f

The first step in the definition of an extensible grammar is to define the
names of the sorts and the signatures of the constructors available for the
construction of target-language terms. Our example uses the following target,-
language-specific sorts:

Term terms of the lambda calculus
Fields ordered associations bet,ween field names and terms

16

Since identifiers require particular attention during expression rewriting, there
are three predefined sorts t,o distinguish the binding properties of ident,ifiers:

Binder identifiers appearing in binding positions
Var identifiers appearing as variables inside the scope of a. binder
Label identifiers that are not subject to scoping

These sort names appear in the signatures of the term constructors for the
lambda calculus:

mkTermVar(x:Var):Term
mkTermFun(x:Binder a:Term):Term
mkTermApp(a:Term b:Term):Term
mkTermRcd(f:Fields):Term
mkTermDot(a:Term x:Label)
mkFieldNil():Fields
mkFieldCons(x:Label a:Term f:Fields):Fields

Lambda abstractions (mkTermFun) introduce identifiers in binding positions,
while other identifiers inside terms (mkTermVar) appear in non-binding posi-
tions. In our example, field labels (mkTermDot, mkFieldCons) are not subject
to block-structured scoping rules and are therefore defined to be of sort Label.
For the purpose of grammar definitions it is not necessary to present the binding
rules of the target language in more detail.

Given a target-language description in terms of constructors and sorts, a.
context-free grammar is defined as a collection of productions that translate
phrases in an input stream into terms of the target language. A concrete
syntax for the lambda calculus with records is defined in figure 2. The notation
used is explained in the rest of this section.

This grammar consists of four mutually recursive productions that define
precedence of applications over abstractions and left-associativity of applica-
tions. Here are examples of input phrases parsed according to the root produc-
tion term:

peter mkTermVar(peter)
peter.age mkTermDothkTermVar(peter) age)
fun(p)p(b) mkTermFun(p mkTermApp(mkTermVar(p) mkTermVar(b)))

The result of parsing is a structured term of the target language. This term
can be viewed as a tree in which the inner nodes correspond to term constructor
applications and the leaves correspond to identifiers (or literals) extracted from
the source text. A token sequence to which no production applies is rejected
by the parser with an error message.

A grammar introduces a set of non-terminals (simpleTerm, term, . ..) as
identifiers for productions. Productions can be parameterized by terms of the
target language (see, e.g., termIter). The signature of a non-terminal defines
its parameter names and sorts as well as the sort of terms returned by the
production.

Each production consists of n > 1 expression sequences separated from each
other by a vertical bar (I). Each ex p ression specifies an input syntax and a
result expression (following the => symbol) to construct a term of the target
language. Based on the token sequence encountered during parsing, one of

A

17

the alternative expression sequences is selected and its corresponding result
expression is evaluated in an environment that contains the actual parameter
bindings and local bindings introduced on the left of the => symbol.

The input, synt,ax accepted by an alternative is defined using the following
notation:

"X" accept t,he keyword x

ide accept any non-keyword identifier
X accept, the input specified by the production identified by the non-

terminal x

x(y) accept the input specified by the parameterized production iden-
tified by the non-terminal x with the argument y

x=y bind the term defined by y to a local variable x
pIde:S accept a pattern variable of sort S (see section 3.3)

Each grammar det,ermines a set of keywords reachable from productions of
the grammar. The set, of identifiers accepted by ide in a given grammar g
excludes the keywords of g. Therefore, synt,ax extensions may introduce new
keywords while syntax restrictions may change existing keywords into identi-
fiers.

The binding structure of the concrete syntax is defined implicitly by pass-
ing identifier tokens from the input as arguments to term constructors. For
example, the variable x in the grammar definition

“fun” I’(” x=ide ‘1) ‘1 a=term => mkTermFun(x a)

appears in a Binder posit,ion of t,he term const,ructor mkTermFun. Therefore, it
can be deduced that the variable person in the source text fun(person)
appears in a binding position.

The recursive production fields in figure 2 genera.tes right-associative syn-
tax trees for field lists while the production termIter generates left-associative
syntax trees for function applications. Because we use an LL(l) parser, left.-
associative grammars are handled in our grammar formalism by passing the
syntax tree for the left context of a phrase as a production argument for the
recursive invocation of a production (e.g., a:Term in production termIter in
figure 2).

3.2 Incremental Grammar Definitions

This section explains how to define the syntax of a new object, language OLc,
as an extension or a restriction of an existing object language OL,,-1. Such a
syntax redefinition is validated by the grammar checker and used to derive a
parser for OL,, from an existing parser for O1;,-1.

A grammar defines a mapping from non-terminals (e.g., simpleTerm, term)
to variables that are initialized with productions. Inside a production, each
non-terminal denotes the production identified by its variable. Three incre-
mental grammar operations are available: addition, extension, and update.
The rationale behind these operations is to allow update and re-use of existing
non-terminal definitions, preserving the recursive structure of the grammar.

A grammar addition (==) defines a mapping from a non-terminal to a newly
created variable initialized with a production. For example, we could use the
standard encoding of let bindings:

18

let x=a in b + (fun(x) b)(a)

t,o add the new non-terminal toplevel:

grammar
topLevel:Term ==

a=t erm
1 “let” x=ide 11~” a=term

“in” b=topLevel
end

=> a

=> mkTermApp(mkTermFun(x b) a>

The non-terminal topLevel is mapped to a newly created variable initialized
with a production that accepts terms of the base language and (nested) let
bindings at the top level, but not inside terms.

A grammar extension (I==) d es t ructively updates the variable identified by
a non-terminal with a new production. The new production extends the old
production with additional alternat,ives. For example, to extend simpleTerm,
we could write:

grammar
s impleTerm : Term I==

“unit”
1 *‘let” x=ide ‘1~” a=term

” in” b=t erm
end

=> mkTermRcd(mkFieldNil())

=> mkTermApp(mkTermFun(x b) a)

This grammar extension affects all productions referring to term, allowing unit
and nested let bindings within terms.

A grammar update (: ==) destructively updates the contents of a variable
identified by a non-terminal with a new production that has the same signature,
t,hereby affecting all product,ions referring to that non-terminal. For example,
t,he definition of term could be updated as follows:

grammar
term:Term :==

x=ide

I ” (” a=term b=term “>”
I”{” f =f ields “}”

end

=> mkTermVar (x>
=> mkTermApp(a b)
=> mkTermRcd(f)

This redefinition affects all productions referring to term (simpleTerm, fields,
termIter), thereby restricting the expressiveness of the original language by
disallowing abst,ractions.

3.3 Pattern-based Action Definitions

In the previous section, abstract syntax trees produced by actions are specified
with explicit constructor applications. In this section we introduce patterns
which allow us to write grammars more conveniently by using the existing
target language. For example, the syntax for let and where bindings could be
written more clearly using a pattern:

19

grammar
simpleTerm:Term I==

“let” x=ide 1’~” a=term

“in” b=t erm
end

=> term<<(fun(x) b) (a>>>

Inside the pattern term<<(fun(x> b) (a>>>, t,he variables x, a, and b. int,ro-
duced on t,he left-hand side of the production, act, as placeholders (patt,ern
variables) of sort Binder, Term, and Term, respectively. A pattern p<<s>>

in a grammar g is translated into constructor applications by parsing the in-
put token stream s starting with t,he production p. For example, the pattern
term<< (fun(y) b) (a) >> yields the nested constructor application mkTermApp(
mkTermFun(y b) a) when the token stream (fun(y) b)(a) is parsed as a
term.

The keyword pIde followed by a sort identifier is used in the initial grammar
definition (see section 3.1) to indicates those positions in the input synt,ax where
pattern identifiers may appear. Pattern variables of the sorts Binder, Var. and
Label may appear also at those places in the input, synt,ax where the keyword
ide is used t,o accept identifier tokens of the appropriate sort’.

Many patt,ern-based syntax extensions require the introduction of fresh
identifiers, i.e.. ident,ifiers distinct from ot,her identifiers appearing in Binding
and Var positions, t,o avoid variable captures and name clashes. For example,
the syntax for functional composition (f * g) could be defined as:

grammar
termIter(a:Term):Term I==

“*” b=term x=local => termIter(term<<fun(x)a(b(x))>>)
end

The notation x=local guarantees that a fresh identifier is bound to x for ev-
ery instantiation of this production during parsing. For example, f*g*h is
expanded to fun(x2) (f (fun(xl)g(h(xl))) (x2)), and x*y is expanded t’o
fun(xi) (x(y(x~))), avoiding a variable capture of t,he input, variable x by a
binder introduced in the pat,tern.

Since grammar definitions can be interspersed with object-language expres-
sions, it is desirable to allow patterns to cont,ain variables that refer to global
hindings. For example, the boolean constants true and false are sometimes
represent,ed by the following funct.ions which, when applied to two argument)s,
return one of them:

let T = fun(x)fun(y)x
let F = fun(x)fun(y)y

In t,he scope of these definitions, the following grammar could be defined to
replace the keywords true and false by the variables T and F, respect,ively.

grammar
simpleTerm:Term I==

“true” => term<<T>>
I “false” => term<<F>>

I “if” a=term “then” b=term
“else” c=term => term<<a(b) (c>>>

end

20

During expansion of a pattern with free variables (T and F in the example
above), unwanted variable captures must be avoided. For example, a naive
macro expansion of the term fun(T) T(true) would yield the term fun(T)
T(T) where t,he expansion of t#he keyword true is bound incorrectly. Therefore,
free variables in extensible grammars are handled as follows: Each occurrence
of a free variable x in a grammar definition is replaced by a fresh variable
x’ During parsing, these modified pat,terns generate expansions that contain
unbound variables (T’ and F’). For example, T(fun(T) T(true)) is expanded
to T(fun(T) T(T’)). After the full input, has been parsed, a. target,-language-
specific renaming function is applied to the parsed term. It replaces t,he binder
T and its bound variables by T’) and T’ by T. The result,ing term T(fun(T’ ’)
T’ J (T)) is then submitted to the type checker and code generator.

3.4 Further Examples: Query Notations

In this section we show how some typical database query notations can be
viewed as mere “syntactic sugar” for the application of a single higher-order
iterator function. The reduction of query notations into a single canonical iter-
ation construct has been exploited in the literat,ure to simplify the type check-
ing of database programming languages [OBBT89], the code generation for
query expressions [Tri!31], and the verification of functional database programs
[SS91, sssss]. Tl le o owing examples demonstrate t,hat extensible grammars f 11
provide sufficient, expressive power to define the synt,ax of typical dat,abase
query languages as well a.s t,heir translation into lambda calculus. This trans-
lat,ion preserves the usual scoping rules defined for these query languages.

We assume the grammar extension for booleans defined above and the fol-
lowing global definit,ions that provide a standard encoding of the list, construc-
t#ors nil and cons and a list iterator iter:

let nil = fun(x)fun(n)fun(c) n
let cons = fun(hd)fun(tl)fun(n)fun(c) c(M) (tl(n) (c))
let iter = fun(l)fun(n)fun(c) l(n)(c)

The syntax of a “list, algebra” with selection, projection, and bina.ry join can
then be defined as follows:

grammar
simpleTerm:Term I==

“select” x=ide “in” a=term “where” b=term y=local

=> term<<iter(a) (nil) (fun(x)fun(y)if b then cons(x)(y) else y)>>
1 "project" x=ide “in” a=term “onto” f=f ieldList(x) y=local

=> term<<iter(a) (nil) (fun(x)fun(y)cons({f}) (y))>>
1 $1 join” x=ide “in” a=term ‘1, ” y=ide “in” b=term

“where” c=term x2=local y2=local
=> term<<iter(a) (nil) (fun(x)fun(x2)iter(b) (x2) (fun(y)fun(y2)

if c then cons({fst=x snd=y})(y2)eIse y2))>>
fieldList(x:Var):Fields ==

y=ide ” , ” f =f ieldList (x) => fields<<y=x.y f>>

I => fields<<>>
end

21

For example, a selection expression with a variable identifier x, a range expres-
sion a, and a selection predicate b is translated into an iterative loop. This
loop over a has x as its loop variable and starting with the empty list nil it
adds those elements that satisfy the selection predicate b:

iter(a) (nil) (fun(x)fun(y)if b then cons(x)(y) else y)

In this expression, y is a fresh local variable which is bound during iteration
to the result of the previous iteration step. This translation correctly captures
the scoping rules for the list algebra, since the variable x is visible only in b
and not in a. Furthermore, global identifiers are visible in a and b.

The parameterized production f ieldList demonstrates how parameters
may be used to distribute terms (in this case a variable identifier x) into mul-
tiple subterms. Using the extended grammar one can write, for example, the
following queries that use global identifiers Persons, thirty, and equal:

select p in Persons where greater(p.age)(thirty)
project p in Persons onto name, age
.join p in Persons, s in Students where equal(p.name) (s .name)

Furthermore, it is possible to nest queries and to paramet#erize queries:

fun(limit) select p in
select p in Persons where greater(p. salary) (limit)

where greater (p. age) (thirty)

Note that the identifier p in the subquery will be correctly bound t,o the inner
p in t,he generated lambda term.

Simulating SQL expressions is slightly more complicated, since SQL allows
the repetition of range expressions to express selections, projections, and n-way

joins using a uniform notation:

select target(x) from x in a where predicate(x)
select target(x)(y) from x in a, y in b where predicate(x)(y)
select target(x) (y) (z) from x in a, y in b, z in c
where predicate(x)(y)(z)

Therefore, the rewrite rules have to ensure that the target and the selection
expressions appear in the scope of n (n > 1) fun binders in the generated
lambda term. The following grammar uses a recursive, parameterized produc-
tion rangeIter to achieve the desired rewriting:

grammar
simpleTerm:Term I==

“select” a=term “from” x=ide “in” b=term c=rangeIter(a)
=> term<<iter(b) (nil) (fun(x)c)>>
rangeIter(a:Term):Term ==

0’ ‘1 x=ide “in” b=term c=rangeIter(a) y=local
=> tkm<<fun(y)iter(b)(y)(fun(x)c)>>

1 “where” b=term y=local
=> term<<fun(y)if b then cons(a)(y) eke y>>

end

22

For example, a two-way join would be expanded as follows:

select {~.a y.b} iter(X)(nil)(fun(x)

from x in X, y in Y j fun(zl) iter(Y)(zl)(fun(y)

w11ere p(x.c)(y.c) fun(z2) if p(x.c)(y.c) then

cons({x.a y.b})(zr?) else ~‘2))

4 Formalizing Grammars and Parsers

In se&on 4.1 we describe t,he rules t,hat, are USNI in the grammar checker (see
figure 1) to statically decide whether a sequence of grammar definit,ions and
grammar extensions is well-formed. In section 4.2 we formalize the parse rules
t,hat. define the mapping from an input, stream into a constructed term of the
t#arget language. WC also present. a soundness result of the dynamic parse rules
with respect to the static type rules of section 4.1 which guarantees t,hat parsers
derived from well-typed grammars return well-formed parse trees. This result, is
generalized in the full paper t,o parsers derived from incremental pattern-based
grammar definitions.

4.1 Static Typing of Grammar Definitions

‘I’o describe the type rules for grammar definit,ions and ext.ensions, we first,
define the relevant, synt,act,ic objects (sorts. signat,ures. productions, grammars,
grammar sequences).

The synt,ax for term sort,s B and signat#ures S is defined as follows:

R ::= Unit, 1 Var 1 Binder 1 Label predefined t,erm sorts

1 B1 1 1 B” t,arget-language-specific sort,s (71 > 0)
s ::= (Bl, , L&p production signatures (k > 0)

The abstract syntax of productions is slightly more orthogonal than the con-
crete syntax we have used in the examples. In part,icular, terminal produc-
tions like ide(B) or “x” may appear nested within constructor and production
argument lists. Furthermore, the synt,actic separation of productions into a
binding sequence and a construct,or applicat,ion (t,o the right, and left of t,he
=>, respectively) is no longer enforced. For example, t,he product,ion x=ide
=> mkTermVar(x) in t,he concrete syntax is tra.nslat,ed into a simple sequential
composition z = ide(Va.r) mkTermVar(x).

y ::= unit
” 2”

I global(z)

I x

I Pl I Yz

unit production

keyword token production
variable token production (of sort B)
fresh obje&language variable
global object-language variable
term variable
sequential composition
pattern variable binding
choice
non-t,erminal application (/c > 0)
sorted constructor application (Ic > 0)

A

23

The set of const,ructors c(B,, ,Bk)B with argument sorts Bi and result sort B

contains the target-language-specific constructors (e.g., mkTermVar, mkTerm-
Fun).

A grammar consists of a list of noii-terminal definitions that define a signa-
ture, a. modification operator, and a production.

g ::= [I empty grammar
1 g 11: : (zl:B1,. _, zk:Bk)B a y non-terminal definition

a ::= =z grammar addition
1 :z= grammar update
I I== grammar extension

Each grammar is defined in the scope of it,s preceding grammar definitions:

gseq ::= empty grammar sequence
I gseq g grammar composition

A global environment E assigns signatures to non-terminals:

E::= @ empty environment
1 E,.c:S non-terminal CC has signature S

A local environment L assigns signatures to term variables:

L::= @ empty environment
I L,z:B variable x has sort B

Environment concatenation is written as E, E’. The domain of an environment,
denot,ed by Dam(E), is the set of variables x defined in E. A variable name x
may occur more than once in an environment. In this case, the type rules for
variables retrieve the rightmost sort or signature assigned to X.

The st,at,ic semantics of grammars involves the following judgements:

E; L F p : B production JI has sort B assuming E and L
Etg::E’ grammar g defines signatures E’ consistent with E
Etgok grammar g defines productions consistent wit811 E
t gseq =S E grammar sequence gseq defines a final environment, E

The structure of the sort, rules for productions p resembles the structure of
t,yping rules for terms in a simply-typed lambda calculus:

E; L F unit : ITnit,

E; L F “z” : Unit
E; L t pl : B E; L, z : B b pz : B’

E; L k .r = pl p2 : B’
E; L F ide(B) : B E; L t pl : B E; L t p2 : B

E; L F local : Binder E; L k p1 1 pl : B
E; L t global(z) : Var E; L k p, : B, I<;</;

.r 51 Dom(L’) E; L k C(B~,. ..Bk)&l,. >pk) : B

E; L, z : B, L’ t z : B E;L’rpp,:B, l<i<k z e Dom(E’)
E; L k pz : B’ 1 E; L k pl : B E, z : (BI,. , Bk)B, E’; L k z(pl,. ,pr;) : B

E; L t- p1 p2 : B’

Since non-terminal definitions can be recursive, the type checking of a gram-
mar g is performed in two passes. A first pass (E I- g :: E’) collects the signa-
t,ures E’ of all non-terminals in g, verifies that each non-terminal is defined at

24

most, once in g, and asserts that all grammar updates (x : S:==p) and gram-
mar extensions (.z : S(==I) f t 1 re er o non-terminals with matching signatures in
the scope E of g:

Et-[::@

Etg::E’ x $ Dom(E’)
Et g x : (xl:B1, _. .,zk:Bk)B == p :: E’,x : (BI,. ., &)B

Etg::E’ x $ Donz(E’) a E {:==, I==}
Etx:(B1,...,Bk)B

E t g z : (xl:B1,. ,G~:L&)B a p :: E’, z : (&, _, &)I?

In a second pass (E t- g ok), the bodies p of all non-terminal definitions in
g a.re checked t,o match their signatures in E. The rules for parameterized
non-t,erminal definitions resemble t#he type rules for lambda abstract,ions:

E t [] ok

Etgok E;@,xl:B1 ,..., xk:Bktp:B aE{==,:==,I==}
Etgx:(zl:B1,...,;e~:Bk)Bupok

A sequence of grammars is verified by performing the above two passes on each
grammar in t,he sequence using the environment est,a.blished by it)s preceding
grammars:

t* @
t gseq =S E Etgz::E’ E, E’ t g ok

t gseq g + E, E’

It is possible to derive a simple consistency-checking algorithm from t,hese
inference rules as follows: Starting with the proof goal l- gseq + E’, the in-
ference rules have to be applied “backwards” (from the conclusions to the as-
sumptions). Since for each syntactic construct there is exactly one applicable
inference rule, the derivation either rea.ches the axioms (in time proportional
to the size of the grammar) or gets stuck in a configuration where no inference
rule can be applied. In the latter case the grammar sequence is rejected as
ill-typed. In the next section we prove that parsers derived from well-typed
grammars never generate ill-formed syntax trees.

4.2 Parsing and Term Construction

Each non-terminal ;7: in a grammar serves a dual purpose. On the one hand.
it, det,ermines how t,o parse an input token stream and how to construct a cor-
responding term of t)he target language. On the other hand, it defines how t.o
transform a patt,ern (a token stream inside <<>> brackets) occurring in an in-
cremental grammar definition into an equivalent production. In this section we
describe the parsing of input token streams, while pattern parsing is described
in the full paper.

For the purpose of parsing it is convenient to rewrite a grammar sequence
gseq into a single grammar g of the form [], Xl : Sl==p1,. ,Xk : Sk==pk
(Ic > 0) such that xi # xj for i # j. We use the notation:

wq - 9 grammar sequence gseq normalizes to g

A

25

g; M t (s, i) unit =+ (s, i) unit

g; M 1 (cz :: s, ;) “1” =$ (s, ;) unit

g; M t (x :: s, i) ide(B) + (s, ;) zg z @ l<(g) B E {Binder,Var,Label}

g; M k (s, i) local =k- (s, i + 1) xL,,~~~

g; M 1 (s, i) global(z) + (s, ;) xvar

g; h,f, x = t. hf’ t (s, i) x =+ (s, z) t x @ Dom(M’)

9; M k (s, i) .r * (s, 2) wrong 5 @ DOT/,(M)

9; M t (3, QPl =+ (s’, 2) t t # wroq

9; M F- (s’, 2’) p2 =2- (s”, 2’) t’ 9; M k (s, i) pl G- (s’, i’) wrong
Y: M t (s, q PI p2 * (s”, i”) f’ g; M t (S, i)Pl p2 * (S”, i”) wrong

g; M k (33 2)Pl =+- (s’, 2’) t t # wrong

!I; M, x = t k (s’, 2) pz * (g”, ;“) f,’

g; M k (s, i) x = 1’1 pa j (s”, ;“) f’

9; M k (.c i)p, + (s’, i’) wrong

9; M k (,9, 2) X = 111 p2 * (S’, i’) wrong

9; M k (s, i)Pl =+- (s’, i’) t .Y; M k (s, i) p2 =k (s’, I’) t

9; M t (3, 2) PI I p2 * (s’, 2) t 9; M b (s> i) ~1 / pz =+ (s’, ;‘) t

Y; M t (+1,i,-l)P, * (S3,i3)f3 1 < j < I;
Y; M t (SO> io) C(B,,. .,Bk)B(Pl, ,Pk) * (Sk, ik) C(B,, ,Bk)B(tl..~..tk)

g;Mk(s,-I,$-l)p, *(s,,i,)f, l<J<k

(x : (s1:B1,.) xk:Bk)B)=‘p E g

g; 0 Xl = t1 . Xk = tk 1 (Sk) p * (s’, i’) t

!I; M i- (so, io) L(Pl, ,Pk) * (s’, i’) t

%Mt(s,-l,i,-l)P, =F(s,,i,)t,
(x : (x1:&, , xk:Bk)B==p) @ g

g; 8 xl = fl xk = tk k (Sk) p j (S’, i’) t

io)X(p~,...,pk) * (s’,i’)wrong

Figure 3: Parse rules for terms

In this rewrik process, grammar updates (x : S:==p) and grammar ex-
t8ensions (r : Sl==p) are eliminat~ed by changing t,heir corresponding original
definitions (x : S==$) into E : S==p and E : S==y 1 p’, respectively. Name
conflict,s between grammar additions z : S== p and II: : S’==p’ (17 # 17’) in

t,wo grammars of gseq are resolved by consistently renaming one of t,he non-
terminals t,o a fresh non-t,erminal r’ within in it,s local scope. It, is easy t,o see
that, normalizat,ion preserves typing, t,hat is, if gsrq- Q and F gseq + E, then
t- g ti E’, where E’ is equal to E up to duplicak elimmation.

We use the following notation t,o describe how a product,ion of a grammar
g applied t,o an input stream const’ruck a term t of the t,arget’ language:

It, st,ates t,hat production 1) executed in environment g; M starting in the initial
configuration (s% i) ret,urns a term t and a final configurat8ion (s’, i’). A dynamic
environment M conkins local t,erm variable bindings. A configurat)ion (s, i)
consists of t,he input st,ream s and an int,eger counter i to generat,e uuique fresh
ideluifiers .rB dist,inct from user-defined identifiers of the form 2~.

The parsing rules are given in figure 3. These rules involve synt,actic objects
of t,he following cat,egories:

s ::=
*
x :: 5

b ::=
unit

J-BZll&T

*~l’ar

XLnbel

input streams
empty input st,ream
identifier token
terms
trivial term
binder identifier
variable ident,ifirr
label identifier

fresh identifier of sort B (i > 0)
R E {Binder, Va.r, T,abel}
construct8ed t,erm (k > 0)
parse results
term
type error
dynamic environments
empty environment,
term binding

An input8 st,ream is a sequence of identifiers. some of which may have been

declared to be keywords (e.g., "if") in g. We use the notation Ii(g) to denotes
t,he set of keywords defined in productions of g. The pa,rsing rules for terminals
use K(g) t,o distinguish bet#ween keywords and ident,ifiers appearing in t,he input.
&ream.

The sort, of a krm can be determined without, reference to an environment8:

unit : Unit, XB : B XL : R
bl : B1 b,, : Bk

c(B1,. ,Bk;)B(ht.. > hc) : B

A dynamic enviromnent M is said t,o mat~ch a st#at,ic environment, L (written
as M b I,) if it,s t,erm bindings have names and sort,s compatible with the names

27

and sorts in 1,.

The following t,heorem relat,es the dynamic parse rules in figure 3 with the
static type rules presented in se&on 4.1.

Tluzortlm 1 ($ar.srng respeci.s typzng) For all g, E, L,y, Ad, s, s’? i and i’ such
that

1. @ t g :: E
2. Q t g ok
3. E; I! t p : B
4. n/l b L
5. !I; Af t (s, i) p =+ (S’? i’) t

t : R h,olds.

The proof of t,his theorem can be found in t,he full paper. In part,icular, if a non-
parameterizcd (L = 114 = 0) parser with result, sort, B for a root, production l’n
defined in a type-correct’ grammar g consumes the full input stream s (returning
t’he empt,y input, stream c)~ the parse result t is guaranteed t,o be of sort, B:

Corollary 1 If

l 12 t g :: E

. @tgok.

. E;;gt ~0 : B, and

l g; (2, t (s, 1) PO =+ (*, i’) t

then t : B avd t # wrong.

5 An Extensible Parser Package

Ext,ensible grammars as described in this paper were developed in the cont,ext) of
the Tycoon dat,abase programming environment [MatSIS]. However, as sket,ched
in figure 1, the extensible grammar package was implement.ed in a way t)hat
fact,ors out all target-language dependencies (t)he base sorts Bi, the abst#ract,
syntax t,rcc constructors c(B~,,, ,B~)B) and the renaming operat,ion on abst.ract,

syntax t,rees) from the package implement.ation.
A t,oken &ream s is represented as an object with a local state and met)hods

lo inspect the current input t,oken and to advance t,o the next input t,oken.
A parser for terms of a sort, B is represented as a function that t,akes a

scanner object and returns a typed abstract, synt)ax tree, modifying the state of
the scanner object and a variable counter to generate fresh variable identifiers.

A grammar gi is represented as an object, of an abstract data type encapsu-
la.ting information about) the target’ language TL and t,he object, language OLi
accepted by g,. ‘Jhe implementor of a compiler for a language with an exten-
sible grammar links the parser package into the compiler. A grammar for t,he

28

t,arget language at hand is generated via calls to the parser interface. Finally,
a parser for this grammar is generated which in t#urn is used t,o parse actual
program input.

The following st.eps have to be taken to generate the grammar go and a
parser for the initial object language OLO. Each of these steps is implemented
by a funct,ion call to the parser package that, passes the grammar as an explicit.
argument.

1. Creation of an initial (empty) grammar go. Arguments to this operation
provide information to the parser package about the tokens returned by
t,he scanner and funct,ions to create fresh identifiers. An initial grammar
already contains the names of the builtin sorts Label, Var, and Binder.

2. Addition of named sorts to go. These sorts correspond to abstract-syntax-
t,ree types in the target,-language compiler. For each newly defined sort,
an AST copy routine, an AST renaming routine, and a distinguished
error value have to be supplied. The error value is generated by the

parser package in case of parse errors.

3, Addition of named constructors to go. Constructors correspond to func-
tions in the target-language compiler that take Ic >_ 0 typed abstract
synt,ax t,rees and return an aggregated syntax tree. For each constructor,
the list of it#s argument sorts and its result sort have to be specified.

4. Addition of a concrete syntax for grammar definitions to go. Target,-
language implementors can adopt, either the concrete syntax used in this
paper (grammar end) or t,hey can define their own tailored syntax
for the definition of productions p that match the abstract syntax given
in section 4.1.

5. Generation of a parser for go. Parser generation involves the calculation
of director sets to support efficient LL(l) p arsing. Furthermore, variable
and non-t,erminal references are resolved into direct, table indices.

6. Parsing of a grammar extension g using the parser generated in the previ-
ous st#ep. The grammar extension g defines the mapping from 0~50 terms
to TL terms.

7. Ext,ension of go by g.

S. Generation of a parser for the extended go.

A pa,rser for OLi derived from a grammar gi returns either a term of the
target, language proper, or an abstract syntax tree for an increment,al syntax
extension ga. In the latt,er case the parser package is invoked to check the
type correctness of gA in the scope of the environment E, established by the
current grammar gi. I f this check succeeds, the extended grammar is obtained
by normalizing the grammar sequence g;, gA - gi+l. Finally, a new parser is
generated for gi+l; this parser can t#hen be used t,o parse further input in the
extended languageOLi+l.

I f t,he parsing result is a term t of the target language, the parser package
also returns a list of variable renamings. These renamings have to be performed
by t#he target-language compiler in t to establish bindings to global variable
ident,ifiers (see se&on 3.3).

29

6 Comparison with Related Work

Syntactic extensibility has been studied previously in the context of program-
ming languages and theorem provers.

Linguistic reflection [SMMSl, SSS+92, SSF92, Kir92] in persistent program-
ming languages has been used to add high-level (query) notations to strongly-
typed programming languages. These extensions are achieved by executing
user-defined code at compile time to transform syntax trees returned from the
parser prior to further processing by the type checker and code generator. Our
approach differs from this work since we are able to guarantee the termination of
compilation, even when our transformation operations are defined recursively.
Furthermore, we are not aware of work in the context of linguistic reflection to
handle correct,ly the problematic binding situations sketched in section 3.3.

Some non-persistent language implementations, like CAML and SML, inte-

grate YACC or a similar parser generator that allows them to introduce new
syntax [MR92]. I f the new syntax is to be mixed with the old one, the new
syntax must be quoted in some way. Instead, we can freely intermix new and
old syntax without special quotations.

Hygienic macros [KFFD92, Koh86] 1 lave goals similar to those of our ex-
tensible grammars; these macros also work on the abstract syntax and avoid
binding anomalies. However, these macros account only for explicit (parame-
terized) macro calls and not for more liberal keyword-based syntax ext,ensions.
Hygienic macros employ a multi-pass time-stamping algorithm to prevent vari-
able capture; this algorithm is different from our one-pass renaming algorithm.
Furt,hermore, we do not handle quotation and ant#iquotation in the style of Lisp.

Griffin [Gri88] h as enumerated desirable properties of notational definitions
and has studied their formalization. Unlike Griffin who translates notations to
combinator form, we are able to handle variables bound to non-local binders
in patterns. Moreover, while Griffin discusses abstract translations, we pro-
vide a specific grammar definition technique and an efficient parsing algorit,hm.
Parsing is efficient because it is LL(1) and because it avoids the creation of
intermediat)e parse trees, producing abstract, synt)ax trees that do not, require
normalization.

Bove and Arbilla [BA92] d’ ISCUSS how to use explicit substit,utions t,o im-
plement syntax extensions. Theirs is an elegant idea that may be exploited in
syst,ems where the target compiler support,s explicitf substitut8ions. As in the
previous case, their work does not describe a parsing algorit(hm, but presents
an interesting theory.

7 Concluding Remarks

Extensible grammars avoid many of the problems associated with traditional
macro-expansion or program-rewrite tools by sort constraints at grammar-
definition time and by a careful handling of identifiers in binding constructs.
Furthermore, since our work extends the well-undrrstood parser t,echnology by
a small set of concepts, extensible parsers can be integrated wit,h little overhead
in today’s compilation environments.

Traditional database programming languages have a bias t.owa.rds a specific

dat,a model by providing built,-in syntactic support t,ailored t#o the st8ructures

30

and operations of t,hat data model. In a programming enviromnent equipped
with ext,ensible grammars, such syntact,ic forms can be eliminated from t)hc
core language definit,ion and can be int.roduced in application libraries shared
by larger user comniunities.

References

[ASIT A.V. Aho. R. Sethi, and J.D. Ullmann. Compilers: Pr?nciples,

Techniques and Tools. Addison-Wesley, 1987.

[BA92] A. Bove and L. Arbilla. A Confluent, Calculus of Macro Expan-
sion and Evaluation. In ACM Conference on Lisp and Functional
Programmang, pages 278-287, 1992.

[BTBNSI] V. B reazu-Tannen, P. Buneman, and S. Naqvi. Structural Recursion
as a Query Language. In Proceedings of the Third International
Workshop 011 Dniabase Programming Languages, Nafplion, Greece,
1991. Morgan Kaufmann Publishers.

[Car931 L. Cardelli. An Implementation of F, Report 97, Digital Equip-
ment Corporation, Systems Research Center, 1993.

[Gri88] T. Griffin. Notatjional definition ~ A formal account. In Proceedings
Symposium on Logic in Computer Science, pages 3722383, 1988.

[KFFD92] E. Kohlbecker, D.P. Friedman, M. Felleisen, and B. Duba. Hygienic .-

[Iiir92]

[Iioh%]

[KH77]

[Mat,931

[MR92]

[MS911

macro expansion. In ACM Conference on Lisp and Functional Pro-
gramming, 1992.

G.N.C. Kirby. Persistent, Programming with Strongly Typed Lin-
guistic Reflection. FIDE Technical Report Series FIDE/92/40,
FIDE Project Coordinator, Department of Computing Sciences,
IJniversity of Glasgow, 1992.

E.E. Kohlbecker. Syntactzc extensions in the programming language

LI,SP. PhD thesis, Indiana University, 1986.

B.W. Kernighan and D.M. Ritchie. The C Programmzng Language.
Prent,ice Hall, Englewood Cliffs, NJ, 1977.

F. Matthes. Persistente Objektsysteme: Integrierte Datenbanken-
twicklung und Programmerstellung. Springer-Verlag, 1993. (In Ger-
man.)

M. Mauny and D. Rauglaudre. Parsers in ML. In ACM Conference

on Lisp and Functional Programming, 1992.

F. Matthes and J.W. Schmidt. Bulk Types: Built-In or Add-On? In
Proceedings of the Third International Workshop on Database Pro-
gramming Languages, Nafplion, Greece, 1991. Morgan Kaufmann
Publishers.

31

[Naq89] S.A. Naqvi. Stratification as a Design Principle in Logical Query
La.nguages. In Proceedzngs of the Second Internaiional Workshop
on Database Programming Languages, Salishan, Oregon, 1989.

[OBBT89] A. 01 lori, P. Buneman, and V. Breazu-Tannen. Database Program-

[PT93]

[SFL83]

[SMMSl]

[SQL871

[SSSl]

[SSF92]

[SSSSS]

[sss+92]

[TriSl]

ming in Machiavelli ~ a Polymorphic Language with Static Type
Inference. In Proceedings of the ACM-SIGIGMOD International Con-
ference on Management of Data, Portland, Oregon, pages 46-57,
1989.

B. Pierce and D. Turner. Object-Oriented Programming without
Recursive Types. In Proceedangs of the 20th ACM Symposium OIL

Principles of Programming Languages, pages 299-312, 1993.

J.M. Smith, S. Fox, and T. La.nders. ADAPLEX: Rationale and Ref-
erence Manual (2nd ed.). Technical report, Computer Corporation
of America, Cambridge, Mass., 1983.

D. Stemple, R. Morrison, and Atkinson M. Type-sa.fe Linguistic
Reflection. In Database Programming Languages: Bulk Types and
Persistent Data, pages 357-362, Nafplion, Greece, 1991. Morgan
Kaufmann Publishers.

ISO. Standard IS0 9075, Information processzng systems - Database
language SQL, 1987.

D. Stemple and T. Sheard. A Recursive Base for Database Progran-
ming Primitives. In Proceedings of the Kiev East/West Workshop
on Next Generation Database Technology, volume 504 of Lecture
Notes 2n Computer Scaence, 1991.

D. Stemple, T. Sheard, and L. Fegaras. Linguistic Reflect,ion: A
Bridge from Programming to Database Languages. In Proc. HICSS,
Hawaii. pages 46 55, 1992.

D. St#emple, A. Socorro, and T. Sheard. Formalizing 0bject)s
for Databases using ADABTPL. In Advances in Objecf-Orzenied
Database Systems, pages 110-172, 1988.

D. Stemple, R.B. Stanton, T. Sheard, P. Philbrow, R. Morrison,
G.N.C. Kirby, L. Fegaras, R.L. Cooper, R.C.11. Connor, M.P. Atkin-
son, and S. Alagic. Type-Safe Linguist,ic Reflect,ion: A Generat,or
Technology. Research Report, CS/92/6, Univ. of St,. Andrews, Dept.
of Comp. Science, 1992.

P. Trinder. Comprehensions, a Query Not,ation for DBPLs. In
Proceedings of the Third Internatzonal Workshop on Database Pro-
gramming Languages, Nafplion, Greece. 1991. Morgan Kaufmann
Publishers.

